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1. Introduction

For any Banach spaces X and Y, let £(X,Y") denote the set of all bounded
linear operators from X to Y; with £(X) = L(X,X). For T € L(X),
let N(T), R(T), o(T), op(T), 04(T) and o5(T) denote the null space,
the range, the spectrum, the point spectrum, the approximate point spec-
trum and the surjective spectrum of T, respectively. An operator T €
L(X) is said to be an upper semi-Fredholm operator if R(T') is closed and
dimN(T) < oo, and T is said to be a lower semi-Fredholm operator if
codimR(T) < co. T is said to be Fredholm operator if dim N (T) < co and
codimR(T") < oco. The upper semi-Fredholm spectrum o, f(T), lower semi-
Fredholm spectrum o;¢(T) and the essential spectrum o.(T) are defined by

ouf(T) ={A € C : T — X is not upper semi-Fredholm};

017(T) = {A € C : T'— X is not lower semi-Fredholm};
0e(T) ={A € C : T'— X is not Fredholm}.

For an arbitrary T € L£(X), the local resolvent set pr(z) of T at a vector
z in X is defined to consist of all A € C for which there exists an analytic
X-valued function f on an open neighborhood U of A such that

(T —p)f(p) =2, forall pel.

The local spectrum o (x) is defined by op(x) = C\ pr(x). The local spec-
trum op(x) is a subset of o(T") and it may happen to be empty. Moreover,

we have (see [12])
os(T) = U or(x).
zeX
For T' € £(X) and F C C, let X7 (F') denote the local spectral subspace
defined by
XT(F) = {{EEX : UT({E) QF}

Clearly, X7 (F') is a linear (not necessarily closed) subspace of X. The
operator T is said to possess the Dunford’s property (C) if X7 (F) is closed
for every closed subset F' of C.

The operator T' € L(X) is said to have the single valued extension
property (SVEP, for short) at A\ € C provided that there exists an open
disc V centered at A such that for every open subset U C V, the constant
function f = 0 is the only analytic solution of the equation

(T—=pwf(p)=0 Vuel.
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We use S(T') to denote the set where T fails to have the SVEP and we
say that 7" has the SVEP if S(T) is the empty set, [11, 12]. In the case
where T has the SVEP, op(z) = 0 if and only if 2 = 0. Moreover ([13,
Lemma 3)),

o(T) =o0s(T)US(T).

For an open set U of C, let O(U, X) be the Fréchet space of all X-valued
analytic function on U endowed with the topology defined by uniform con-
vergence on every compact subset of U. An operator T € £(X) is said to
satisfy the Bishop’s property (8) on an open set U C C provided that for
every open subset V of U and for any sequence ( f,), of analytic X-valued
functions on V,

(T = 1) fupt) — 0 in O(V, X) = (i) — 0 in O(V, X).

Let pg(T) be the largest open set on which 7" has the property (3). Its
complement og(1") = C\ pg(T’) is a closed, possibly empty, subset of (7).
Then T is said to satisfy the Bishop’s property (3), precisely when og(7T) =
0, [4, 17).

It is well known that the following implications hold
Bishop’s property (5) = Dunford’s property (C) = SVEP.

In order to introduce the dual notion of Bishop’s property (), we need
a slight variant of the local spectral subspace. For a closed subset F' in C,
the glocal spectral analytic space Xp(F') is the linear subspace of vectors
x € X for which there exists an analytic function f : C\ F' — X such that

(T —p)f(p) =2, forall peC\F.

We point out that the analytic function f is defined globally on the entire
complement of F. Evidently, X7(F) is linear subspace contained in X7 (F).
Moreover, the equality Xp(F) = Xp(F') holds for all closed sets FF C C
precisely when 7" has the SVEP [12, Proposition 3.3.2].

An operator T € L£(X) is said to have the decomposition property () on
U provided that for all open sets V, W C C for which C\U CV CV C W,

we have

(1.1) Xr(C\ V) + Xp(W) = X.

Let ps(T) be the largest open set on which the operator 7' has the
property (0). Its complement o5(7) = C \ ps(T) is a closed, possibly
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empty, subset of o(T") ( [17, Corollary 17]). Then T has the decomposition
property () if o5(T) = 0.

Properties () and (9) are known to be dual to each other in the sense
that 7" has () on U if and only if 7% satisfies (5) on U [4, 17]. Moreover

03(T) = 05(T") and o5(T) = op(T™).

The operator T € L(X) is said to be decomposable on U provided that
for every finite open cover {Ui,...,U,} of C, with o(T) \ U C U, there
exists Xq,..., X, closed T-invariant subspaces of X for which

(1.2) o(T|X;) CU; for i=1,...,n and X1 +---+ X, = X.

Let pgec(T") be the largest open set U C C on which 7' is decomposable.
Its complement cge.(T) = C \ paec(T) is a closed, possibly empty, subset
of o(T). We say that T is decomposable if c4..(T) = (. The class of
decomposable operators contains all normal operators and more generally
all spectral operators. Operators with totally disconnected spectrum are
decomposable by the Riesz functional calculus. In particular, compact and
algebraic operators are decomposable.

It is also known that () characterizes operators with decomposable
extensions [4]. Property (/) is hence conserved by restrictions while (0) is
transferred to quotient operators. See also [12] for more details. We have

0aec(T) = 05(T) Uos(T) = 05(T) Uos(1%) = 0ec( ™).

Let £(U, X) be the Fréchet space of all X-valued C*°-functions on U.
The operator T is said to satisfy the property (5¢) at A € C provided that
there exists open disc U centered at A such that for every open subset
V C U and for any sequence (fy,), of infinitely differentiable X-valued
functions on V', we have

(T = 1) i) — 0 in E(V, X) = fulps) — 0 in E(V, X).

Let 05 (T") be the set of all points where T fails to satisfy the property
(Be¢). Then T is said to satisfy the property (8¢), precisely when og (1)) =
(). The property (53c) plays the same role for generalized scalar operators
as Bishop’s property (8) does for decomposable operators: an operator
T satisfies (¢) if and only if T is subscalar, in the sense that it has a
generalized scalar extension. An operator T is said to be generalized scalar
if there exists a continuous homomorphism algebra ® : £(C) — L(X) with
®(1) =TI and ®(z) =T (see [10]).
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Jacobson’s Lemma asserts that if A € £(X,Y) and B € L(Y, X) then
(1.3) AB — I is invertible if and only if BA — I is invertible.

For A € L(X,Y) and B € L(Y, X), numerous mathematicians showed
that AB—1I (resp. AB) and BA—1I (resp. BA) share many spectral proper-
ties, see [2, 3, 5, 6, 8,9, 14, 19, 21, 22, 23] and the references therein. For the
local spectral properties, Benhida and Zerouali [6] proved that AB and BA
share the SVEP, Bishop property (), the property (3.), the decomposition
property (§) and decomposability. The common local spectral properties
was studied by Aiena and Gonzalez in [2, 3] and Duggal [9] for operators A
and B such that ABA = A% and BAB = B2. Then Zeng and Zhong [23]
extented common local spectral properties for AC and B A under the condi-
tion ABA = AC'A. For operators A, B, C' and D satisfying ACD = DBD
and BDA = ACA, Yan and Fang [21] investigated local spectral properties
for AC and BD. Recently, [7] studied the common properties for ac and

ba for elements in a ring satisfying a(ba)? = abaca = acaba = (ac)?a.

In this note, we extend results of [2, 3, 6, 9, 23] by studying common
local spectral properties for bounded linear operators A € L(X,Y) and
B,C € L(Y, X) such that

A(BA)? = ABACA = ACABA = (AC)?A.

We prove that AC and BA share the single valued extension property, the
Bishop property (), the property (5.), the decomposition property (9) and
decomposability. Closedness of analytic core and quasinilpotent part are
also investigated. Some applications to Fredholm operators are given.

2. common local spectral properties

Proposition 2.1. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)?
ABACA = ACABA = (AC)?A and let A € C. Then AC has the SVEP
at X if and only if BA has the SVEP at .

In particular, AC' has the SVEP if and only if BA has the SVEP.

Proof.  Assume that AC has the SVEP at A and let f be an X-valued
analytic function in a neighborhood U of A such that

(2.1) (BA=p)f(p) =0,V eU.
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By taking ABA values in equality (2.1) and using equality A(BA)? =
ACABA | we obtain (AC — u)ABAf(u) =0,V € U. Since ABAf(u) is
analytic on U and AC has the SVEP at A, then ABAf(u) =0, Vu € U.
By taking A values in equality (2.1), we get pAf(u) =0, Vi € U and then
Af(p) =0,Vu € U. Hence pf(pn) =0,V € U. Thus f(pu) =0, Vu € U.
Therefore BA has the SVEP at .

Conversely, let BA have the SVEP at A. Then it follows from [6, Propo-
sition 2.1] that AB has the SVEP at \. Now with the same argument as
in the direct sense, we get that CA has the SVEP at A. Again by [6,
Proposition 2.1], AC has the SVEP at A.

If Ae L(X,Y) and B,C € L(Y, X) are such that ABA = ACA, then
the result of [8, Theorem 9] is an immediate consequence of Proposition
2.1.

Theorem 2.2. Let A€ L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

o5(AC) = o5(BA).

In particular, AC satistfies property () if and only if BA satisfies property
(8)-

Proof. Assume that AC satisfies the Bishop’s property (5) on some
open set U in C. Let V be an open subset of U and let (f,), be a sequence
of X-valued analytic functions on V' such that

(22) (BA = p)falp) — 0 in OV, X)
Then
ACA(BA — p) f(p) = (AC — p)ACAfn () — 0 in O(V, X).
Since AC satisfies the Bishop’s property (/3), then
ACAfn(u) — 0in O(V, X).

Hence
ABACAf, (1) = A(BA)?f,,(1) — 0 in O(V, X).

Thus it follows from (2.2) that

uABAfn (1) — 0 in O(V, X).
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So by [6, Lemma 2.1], ABAf,(u) converges to zero in O(V, X). Then by
taking A values in equality (2.2) , pAf,(u) converges to zero in O(V, X).
Hence Af,(u) converges to zero in O(V, X) by [6, Lemma 2.1]. Again by
(2.2), pfn(p) and then f,(u) converges to zero in O(V, X). Which prove
that BA satisfies the Bishop’s property (5) on U.

Conversely, Assume that BA satisfies the Bishop’s property (5) on U.
Then it follows from the proof of [6, Proposition 2.1] that AB satisfies
the Bishop’s property (8) on U. Hence by the same way we get that C'A
satisfies the Bishop’s property (8) on U. Thus by [6, Proposition 2.1], AC
satisfies the Bishop’s property (5) on U.

Since () and (§) are dual to each other, then we get from Theorem 2.2

Theorem 2.3. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

05(AC) = o5(BA).

In particular, AC satisfies property (9) if and only if BA satisfies property

(9).

Since decomposability is equivalent to both () and (¢), then it follows
immediately from Theorem 2.2 and Theorem (2.3):

Corollary 2.4. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

Odec(AC) = 04ec(BA).
In particular, AC is decomposable if and only if BA is decomposable.

In order to show that AC and BA share the property (3¢), we need the
following lemma

Lemma 2.5. [6] Let U be an open set and ( f,,)n be a sequence in E(U, X)
such that (pfn(1))n converge to zero in E(U, X). Then (fy), converges to
zero in E(U, X).

Theorem 2.6. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

05.(AC) = 05, (BA).

In particular, AC satisfies property () if and only if BA satisfies property
(Be)-
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Proof. Now using Lemma 2.5 and the same argument as in the proof of
Theorem 2.2 we get the result.

Corollary 2.7. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then AC is subscalar if and only if BA
is subscalar.

3. local spectrum and related subspaces

Theorem 3.1. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then

i) oac(ABAz) C opa(z) C oac(ABAz) U {0}.

ii) oa(ACAz) C oca(z) C oap(ACAx) U {0}.

iii) opA(BACACx) C oac(x) C opa(BACACx) U {0}.

Proof. i) Let A ¢ opa(z). Then there exists an open neighborhood U
of X\ and an X-valued analytic function f on U such that

(BA—p)f(p) =x forall peU.

Hence for any p € U, ABAx = ABA(BA—p)f(p) = (ABABA—uABA) f(u) =
(AC—u)ABAf (). Since ABAf () is analytic on U, then A ¢ oac(ABAx).
Thus cac(ABAzx) C opa(z).

Now let A ¢ cac(ABAz) U {0}. By virtue of [6, Proposition 3.1],
A ¢ oca(BAz)U{0}. Then there exists an open neighborhood U of A with
0 ¢ U and an X-valued analytic function f on U such that

(CA—p)f(u) = BAx for all € U.

Hence ABABAx = ABA(CA—p)f(p) = (AB—p)ABAf(p) forall p e U.
Thus A ¢ 04p(ABABAx) U{0}. Therefore

A ¢ oap(ABABAz) U{0} = X ¢ opa(BABAx)U{0}
= MN¢oap(ABAx) U {0}
=  A¢opa(BAz)U{0}
= A ¢ oap(Ax) U {0}
= A ¢ opa(x) U {0}.

In the last implications we use repetitively ([6, Proposition 3.1]).
ii) goes similarly.
iii) follows from i) and ii).
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Corollary 3.2. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. The following assertions hold

i) If AC is injective, o ac(ABAx) = opa(z) for all x € X.

ii) If AB is injective, 0 oAp(ACAz) = oca(x) for all x € X.

Proof. If AC (resp. AB) is injective then 0 ¢ o(AC) (resp. 0 ¢ o(AC)).
Hence the result follows at once from Theorem 3.1.
In particular, if A, B and C are injective, then

ocac(ABAz) = opa(x) and oap(ACAx) = oca(x), for all € X.

Before that we study the Dunford property (C) for AC and BA, we
start by the following lemmas.

Lemma 3.3. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Let F be a closed subset of C such that
0 € F. Then the following are equivalent:

i) Yac(F) is closed.

ii) Xpa(F) is closed.

Proof.  Assume that Y o (F') is closed and let (z,), be a sequence in
XpA(F) which converges to some z in X. Then opa(z,) C F. By Theorem
3.1, part i), we have cac(ABAx,) C F and then ABAx € Y c(F). Since
ABAx, converges to ABAz and Ys¢(F') is closed by assumption, then
ABAzx € Y o(F'). Hence o4c(ABAzx) C F. Since 0 € F, then it follows
from Theorem 3.1, part i), that opa(x) C F. Therefore z is in Xpa(F)
and Xpa(F) is closed.

For the converse implication, if Xpa(F') is closed then it follows from
[23, Lemma 2.4] that Yap(F) is closed. By the same argument above we
prove that Xca(F) is closed. Hence by [23, Lemma 2.4, Yac(F) is
closed

Lemma 3.4. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A and AC has the SVEP. Let F be a closed
subset of C such that 0 ¢ F'.

i) If Yac(F U {0}) is closed then Xpa(F) is closed.

ii) If Xpa(F U{0}) is closed then Yac(F') is closed.
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Proof. i) Assume that Yo (F U{0}) is closed. Since 0 € F'U {0} then
it follows from Lemma 3.3 that Xpa(F U{0}) is closed. Since BA has the
SVEP by Theorem 2.2, then it follows from [23, Lemma 2.5] that Xp4(F)
is closed. ii) It follows similarly.

Theorem 3.5. Let A€ £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then AC has the Dunford’s property (C)
if and only if BA has the Dunford’s property (C).

Proof. It follows at once from Lemma 3.3 and Lemma 3.4.
The analytical core of T is the set K(T') of all x € X such that there
exist a constant ¢ > 0 and a sequence (z,,), C X such that

o = x,Tx, = xp—1 and ||z, || < "||z| for all n € N.

Recall that (see for instance, [1, Theorem 2.18] or [12, Proposition
3.3.7))
K(T—-MN)=Xp(C\{\})={zeX : A or(x)}.

The analytic core was studied by Mbekhta [15, 16]. In general, K(T') is
not need to be closed. By virtue of [18, Corollary 6], for any non-invertible
decomposable operator T', the point 0 is isolated in o(T") exactly when
K(T) is closed. In particular, if T'is a compact operator, or more generally
a Riesz operators, then K (T) is closed precisely when T has finite spectrum,
[18, Corollary 9.

Theorem 3.6. Let A€ L(X,Y) and B,C € L(Y, X) such that

A(BA)? = ABACA = ACABA = (AC)?A. Then for all nonzero complex
A, K(AC — \) is closed if and only if K(BA — \) is closed.

Proof. Assume that K(AC — ) is closed and let (x,,),, be a sequence in
K(BA — \) such that (zy), converges to x € X. Since (x,,) C K(BA —\)
then for all nonnegative integer n, opa(x,) C C\{A}. Hence it follows from
Theorem 3.1 that cac(ABAx,) C C\ {A}. Thus the sequence (ABAzy,)s,
belongs to K (AC —\). Since ABAz,, — ABAz and K(AC —\) is closed,
then ABAz € K(AC — \) and so o4c(ABAz) C C\ {\}. We deduce
from Theorem 3.1 that opa(x) C C\ {\A}, i.e, v € K(BA — \). Therefore
K(BA— ) is closed. Since K(BA — )) is closed if and only if K(AB — \)
is closed ([23, Corollary 3.3]), then with the same argument we can prove
the reverse implication.
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Associated with T' € £(X) there is another linear subspace of X, the
quasinilpotent part Hy(T) of T defined as

Ho(T) = {z € X : lim |T"| = 0}.
In general, Hy(T) is not need to be closed. By [12, Proposition 3.3.13],
Hy(T) = Xr({0}).

Theorem 3.7. Let A€ L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then Ho(AC) is closed if and only if
Hy(BA) is closed.

Proof.  Assume that Hy(AC) is closed and let (x,) be a sequence in
Hy(BA) which converges to z € X. It is easy to see that ABAz,, belongs
to Ho(AC). Since Hy(AC) is closed and AB Az, converges to ABAz, then
ABAzx € Hy(AC). From the equality

1 1 1 _p_
I(AC)P ABAz||7 = ||(ABP* Ax||7 = (||(AB)P*! Ag||7+1) 751
we have Az € Hy(AB). Since
[(BAP+Lg|7HT = |B(AB)P Az |71
< |BII7¥ (|| (AB)P Az ) i1
1 1
< M7 (||(AB)P Az|?)7T  where M = max(||B|, 1);

then x € Hy(BA) and so Ho(BA) is closed.
The reverse implication goes similarly.

4. Applications and concluding remarks

A weaker version of property (J) can be given as follows (see [24] for a
localized version): an operator T is said to have the weak spectral property
(0y) provided that for every finite open cover {Uy,...,U,} of C, we have

(4.1) Xr(Uy) + -+ Xr(U,) is dense in X.

Proposition 4.1. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Assume that ABA and ACA have dense
ranges.

i) If BA has the property (d,,) then AC has the property (dy,).

ii) If C'A has the property (0,,) then AB has the property (dy).
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Proof. = We only prove i). Assume that BA has the weak property (dy,).
Let {Uy,...,U,} be a finite open cover of C. Then

Xpa(U1) + -+ Xpa(U,) is dense in X.

It is easy to see that ABA(Xpa(U;)) € Yac(U;) for each i, i = 1,...,n.
Since ABA(X) is dense in Y, then it follows that

Yac(U1) + -+ Yac(Uy) is dense in Y.

Thus AC has the property (dy,).
We do not know if we can drop the condition that ABA and AC A have
dense ranges in the last proposition.

Proposition 4.2. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

AC — 1 is surjective if and only if BA — I is surjective.

In other word,
os(AC) U {0} = 05(BA) U {0}.

Proof.  Since for every bounded linear operator T' the surjective spec-
trum satisfies o5(7T") = U or(x), then it follows from Theorem 3.1, part
reX

i), that 05(AC) C 04(BA) U {0}. Also by Theorem 3.1, part iii), we get
0s(BA) C 0,(AC) U{0}. Thus,

0s(AC)U{0} = 04(BA) U{0}.
It is well known that for 7' € £L(X) we have 0,(T") = o5(T*) and 04(T") =
).

0q(T™) (see for instance, [12, Proposition 1.3.1]). Then it follows from
Proposition 4.2:

Proposition 4.3. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

AC — I is bounded below if and only if BA — I is bounded below.

In other word,

0a(AC) \ {0} = 0a(BA) \ {0}.
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Remark 4.4. A direct proof of Proposition 4.3 can be given as follows:
Assume that AC — I is bounded below. Then there exists ¢ > 0 such that

z]| < cl|(AC = I)zf|, Vz € X.
Then for all x € X,

|ABAz|| c|(AC — I)AB Az

<
— ¢|(ABABA - ABA)z|
< d[ABA|[(BA - I)z|.

Hence
|Az|| < |ABAz|| + ||ABAx — Az||
< c||ABA||[[(BA — Dz| + ||A[[[[(BA — I)z|
< J(BA=Dz| (¢ = c[[ABA| + || Al]).
Thus
k4] |BAz| + [(BA - I)z||

B[l Az]| +[[(BA = I)z]|
1BII¢I[(BA = Dz|| +[|(BA = I)x|
N(BA =Dzl (¢" = [|Bl|¢" +1).

VA VAR VANRVAN

Therefore, BA — I is bounded below. The other sense goes similarly.

From Proposition 4.2 and Proposition 4.3 we retrieve the result of [7,
Lemme 3.1] for bounded linear operators:

Corollary 4.5. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then

AC — I is invertible if and only if BA — I is invertible.

In other word,

o(AC)\ {0} = a(BA) \ {0}

Proposition 4.6. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

AC — I is injective if and only if BA — I is injective.

In other word,

op(AC) \ {0} = 0,(BA)\ {0}
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Proof.  Assume that AC — I is injective. Let x € X such that (BA —
Iz = 0. Then BAx = x. Hence ABABAx = ACABAx = ABAz. It
follows that (AC — I)ABAx = 0. Since AC — I is injective we deduce
that ABAz = 0. Then Ax = 0. Thus z = 0. The other implication goes
similarly.

Let [°°(X) be the set of all bounded sequences of elements of X. En-
dowed with the norm ||(z,,)|| = sup,, ||z.]|, {°°(X) is a Banach space. For
T = (zp) € [®°(X) let ¢(Z) be the infimum of all ¢ > 0 such that the set
{z,, : n € N} is contained in the union of a finite number of open balls
with radius €. Let

m(X) = {7 € 1°(X) : ¢(%) = 0}.

For T € £(X) let T be the bounded linear defined on [*°(X) by T°°((xy,)) =
(Tx,). Set X =1°(X)/m(X) and let T : X — X be the operator defined
by T(&+m(X)) = T®Z+m(X). Then by [20, Theorem 17.6 and Theorem
17.9] we have

T is upper semi-Fredholm <= T is injective <= T is bounded bellow

and
T is lower semi-Fredholm <= T is surjective .

Now let A € £L(X,Y) and B, C € L(Y, X) such that A(BA)? = ABACA =
ACABA = (AC)?A. Then

As an immediate consequence of Proposition 4.2 and Proposition 4.3
we get the following result.

Proposition 4.7. Let A € L(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)?A. Then

i) AC—I is upper semi-Fredholm if and only if BA—I is upper semi-Fredholm;
ii) AC—1 is lower semi-Fredholm if and only if BA—1I is lower semi-Fredholm.
In other word,

ouf(AC) \ {0} = 0us(BA)\ {0};
a1 (AC)\ {0} = 017(BA) \ {0}.

Corollary 4.8. Let A € £(X,Y) and B,C € L(Y, X) such that A(BA)? =
ABACA = ACABA = (AC)%A. Then

AC — I is Fredholm if and only if BA — I is Fredholm.
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In other word,

0e(AC) \ {0} = 0.(BA) \ {0}.

Remark 4.9. If A and B € X such that ABA = A? and BAB = B2, then

(4.2) A(BA)> = ABAIA = ATABA = (AI)?A
and
(4.3) B(AB)* = BABIB = BIBAB = (BI)*B.

Then it follows from (4.2) and (4.3 that A, B, BA and AB share the
spectral properties above. So we retrieve the results of [9].

In the following examples, the common spectral properties for AC and
BA can only followed directly from the results above, but not from the
corresponding ones in [23].

Example 4.10. Let P be a non trivial idempotent on X. Let A, B and
C definedon X & X & X by

A= et B = and C' =

o oo
o N~
c oo
oo~
o ~O
c oo
o ~O
~ o o
oo o

Then A(BA)? = ABACA = ACABA = (AC)?A and ABA # ACA.

Example 4.11. Let A and B be as in Example 4.10 and let C be defined
on XX ®X by

0
C=| P
0

~N o O
S O O

Then A(BA)? = ABACA = ACABA = (AC)?A and ABA # ACA.
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